The Physical Quantities Corresponding to the Indices

The TKNN Formula for the Quantum Hall Conductance

Our goal in this section is to show the quantum Hall conductance of a bulk system.
The first thing we do is analyze the linear response formula of Kubo (perturbation theory in quantum
mechanics). This will give us the expectation value of an observable in the presence of a perturbation.

o Write H = Hp + V (t). V is the perturbation. It is written now with time dependence, but ultimately we will
assume that long ago in the past it is zero and in the far future it is constant.
e p(t) = po + Ap (t) where py is a stationary-state of Hy (that means py = [po, Hol = 0)
e p obeys the Liouville equation p = % H, pl.
e Switch to the interaction picture:
o pl(t) = e mHo pemHot
o po ! =e mMotpgemtot = p
o Ap! (t) = e MOt Ap (1) ei Hot
oHo'=e~ mHotp emHot — |,

1.1 CLam. i @ Apf = [V, pq].

PROOF.

e Reverse the definition to get p = et Hotpl (¢) e~ Hot,
e Plug this into the Liouville equation to get
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o But & (p! ) = di (po +Ap!) = L Apl, and [V!, Ap!] o< O (V2) (because in perturbation theory Ap o V)
o Thus we get LAp! =L VI, pg].
O

o Assume that
Iim Ap(t) = 0
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1.2. CLAIM. We can integrate the equation of motion to get:
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PROOF.
¢ Differentiate this Ansatz to verify its validity.

O
e Let B be some observable.
e Then (B (t)) = Tr (Bp (t)).
o Due to the cyclicity of the trace we have
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where 1 > 0 is some factor we introduce to insure the boundary condition lim¢_, ., Ap (t) = 0 is met.



e Then
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1.3. DEFINITION. Define the linear response function

Xev(w) (1):= 277 (o [V (@), B (1)]) 0 1

e Observe we can again change the order to write

Xev(e) ) = £ Tr (0o [Viw), B (0)])0(t)
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Then we find
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which is the linear response formula.

The next step is to employ this in order to find the Hall conductivity. We will start this analysis in the many-body

picture:

o Define
N

1
BH = _e]ll (T) = —€ (2 Z (Vjué (T_Tj) +9o (T—T‘j)Vju)

j=1

where vj,, is the velocity operator of the jth particle along the uth axis.

o Define the operator

N
Xu = Z ‘r‘ju
j=1

o Define

N
V) = Ze Z TinEuf (1)

=1 une{xvy,z}

= ) eX Euf(t)
o

where E,, is the electric field in the system and f (t) is some attenuation function which goes to zero at

t — —oo and “turns on” adiabatically.
o Then the linear response is

XBoexy (1 = 2T (po [eXu, —ef ' (1] ) 0.1

h
{02

= =T (b0 [Xo, Ju 0] )0 )

e By Ohm’s law, jo = 04bEp, that is, 04y is exactly the response of the current j to the perturbation E, so we

expect oy = XB,ex, (t) somehow, as we shall see below.
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e Assume (In)), o is an orthonormal complete set of eigenstates of Hy (the many-body Hamiltonian) with
eigenvalues (En),, ¢, Where we assume Eg = min ({Enn € IN}). In this basis, pg is diagonal:

Po

and then [py, Hpl = 0 means
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o In the canonical ensemble,
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o When T — 0, we can make the approximation (n|pgln) = 85,0. We also assume that in the ground state

there is no current, that is, (0[], (r

)10 = 0.



o Thus we have
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o The actual conductivity is time independent and so we need to integrate this over time:

(o0}
ouv (1) = HIE&J dte_“tcm, (r, t)
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where e ! is a convergence factor withn > 0.

o Denote by v, the total velocity, that is, v, = [ d*1],, (7).

o We are interested in the conductivity of the material as a whole, and not just at one particular point, so
we should average over space. Thus, if A is the area of the material, the final quantity we are interested
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o The last step is to note that the velocity operator is equal to v, = X,, and of course by the Heisenberg
equation of motion we then have v, = - [X,,, Hol or X;;Ho — HoXo = ihv,. As a result,
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o Thus we can write o,y with only v’s as:
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which is the many body equivalent of the sum on occupied single-particle states

to show this we have to use the formulav = - a%g(k)

2. The Edge Quantum Hall Conductance

The goal in this section is to show that 6.1 actually is equal to the quantum Hall condutance of an edge system. We
assume the chemical potential on one edge is p4 and p_ on the other edge, where 1 # i (otherwise the current on
one edge cancels out the current on the other edge as they flow in opposite directions). Using the formula



j = pv where p is the density of carriers and v is the velocity of the carriers, we have
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where the sum is on intersection points of either i, or u_ with the gapless edge states, v is the velocity, and V is the
potential between the two edges. Thus we obtain that for each ascending crossing of the gapless edge mode with
either iy or p_ we must count +1 for the conductance (given by ¢ = {;) and —1 for a descending crossing.
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