
The Physical Quantities Corresponding to the Indices

The TKNN Formula for the Quantum Hall Conductance

Our goal in this section is to show the quantum Hall conductance of a bulk system. 
The first thing we do is analyze the linear response formula of Kubo (perturbation theory in quantum 

mechanics). This will give us the expectation value of an observable in the presence of a perturbation.

• Write H = H0 + V (t). V is the perturbation. It is written now with time dependence, but ultimately we will
assume that long ago in the past it is zero and in the far future it is constant.

• ρ (t) = ρ0 +∆ρ (t) where ρ0 is a stationary-state of H0 (that means ρ̇0 = [ρ0, H0] = 0)
• ρ obeys the Liouville equation ρ̇ = 1

i h [H, ρ].
• Switch to the interaction picture:

◦ ρI (t) := e− 1
i hH0tρe

1
i hH0t

◦ ρ0 I = e−
1
i hH0tρ0e

1
i hH0t = ρ0

◦ ∆ρI (t) = e− 1
i hH0t∆ρ (t) e

1
i hH0t

H0tH0e
1
i hH0t = H0

dt

◦ H0 
I = e− i

1
 h

1.1. CLAIM. i h d ∆ρI =
[
VI, ρ0

]
.

PROOF.
• Reverse the definition to get ρ = e

1
i hH0tρI (t) e−

1
i hH0t.

• Plug this into the Liouville equation to get
d

dt

(
e
1
i hH0tρI (t) e−

1
i hH0t

)
=

1

i h

[
H, e

1
i hH0tρI (t) e−

1
i hH0t

]
1

i h
e
1
i hH0tH0ρ

I (t) e−
1
i hH0t =

1

i h

[
H0 + V , e

1
i hH0tρI (t) e−

1
i hH0t

]
−
1

i h
e
1
i hH0tρI (t)H0e

− 1
i hH0t

+e
1
i hH0t

(
d

dt
ρI (t)

)
e−

1
i hH0t

1

i h

[
H0, ρI (t)

]
+
d

dt
ρI (t) =

1

i h
e−

1
i hH0t

[
H0 + V , e

1
i hH0tρI (t) e−

1
i hH0t

]
e
1
i hH0t

1

i h

[
H0, ρI (t)

]
+
d

dt
ρI (t) =

1

i h

[
(H0)

I + VI, ρI (t)
]

d

dt
ρI (t) =

1

i h

[
VI, ρI (t)

]
• But d

dt

(
ρI (t)

)
= d
dt

(
ρ0 +∆ρ

I
)
= d
dt∆ρ

I, and
[
VI, ∆ρI

]
∝ O

(
V2
)

(because in perturbation theory ∆ρ ∝ V)
• Thus we get d

dt∆ρ
I = 1

i h

[
VI, ρ0

]
.

�

• Assume that

lim
t→−∞∆ρ (t) = 0

1.2. CLAIM. We can integrate the equation of motion to get:

∆ρI =
1

i h

∫t
−∞

[
VI
(
t ′
)

, ρ0
]
dt ′

1
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PROOF.
• Differentiate this Ansatz to verify its validity.

�

• Let B be some observable.
• Then 〈B (t)〉 = Tr (Bρ (t)).

◦ Due to the cyclicity of the trace we have

〈B (t)〉 = Tr
(
Be−

i
 hH0te

i
 hH0tρ (t) e−

i
 hH0te

i
 hH0t

)
= Tr

(
e
i
 hH0tBe−

i
 hH0te

i
 hH0tρ (t) e−

i
 hH0t

)
= Tr

(
BIρI

)
= Tr

(
BI
(
(ρ0)

I + (∆ρ)I
))

= Tr
(
BI (ρ0)

I
)
+ Tr

(
BI∆ρI

)
• Assume B is such that Tr

(
BI (ρ0)

I
)
= 0.

• Then

〈B (t)〉 = Tr
(
BI (t)∆ρI (t)

)
= Tr

(
BI (t)

(
1

i h

∫t
−∞

[
VI
(
t ′
)

, ρ0
]
dt ′
))

=
1

i h

∫t
−∞ Tr

(
BI (t)

[
VI
(
t ′
)

, ρ0
])
dt ′

=
1

i h

∫t
−∞ Tr

(
BI (t)VI

(
t ′
)
ρ0 −B

I (t) ρ0V
I
(
t ′
))
dt ′

=
1

i h

∫t
−∞ Tr

(
ρ0B

I (t)VI
(
t ′
)
− ρ0V

I
(
t ′
)
BI (t)

)
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

I
(
t ′
)
BI (t) − ρ0B

I (t)VI
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[
VI
(
t ′
)

, BI (t)
])
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[
e−

1
i hH0t

′
V
(
t ′
)
e
1
i hH0t

′
, e−

1
i hH0tBe

1
i hH0t

])
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0e

− 1
i hH0t

′
V
(
t ′
)
e
1
i hH0t

′
e−

1
i hH0tBe

1
i hH0t − ρ0e

− 1
i hH0tBe

1
i hH0te−

1
i hH0t

′
V
(
t ′
)
e
1
i hH0t

′
)
dt ′

= −
1

i h

∫t
−∞ Tr

(
e−

1
i hH0t

′
ρ0V

(
t ′
)
e
1
i hH0t

′
e−

1
i hH0tBe

1
i hH0t − e

1
i hH0t

′
ρ0e

− 1
i hH0tBe

1
i hH0te−

1
i hH0t

′
V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

(
t ′
)
e
1
i hH0t

′
e−

1
i hH0tBe

1
i hH0te−

1
i hH0t

′
− ρ0e

1
i hH0t

′
e−

1
i hH0tBe

1
i hH0te−

1
i hH0t

′
V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

(
t ′
)
e−

1
i hH0(t−t

′)Be
1
i hH0(t−t

′) − ρ0e
− 1
i hH0(t−t

′)Be
1
i hH0(t−t

′)V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

(
t ′
)
BI
(
t− t ′

)
− ρ0B

I
(
t− t ′

)
V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[
V
(
t ′
)

, BI
(
t− t ′

)])
dt ′

• Make a Fourier transform of V as

V (t) = lim
η→0

1

2π

∫
R
e−i(ω+iη)tṼ (ω)dω

where η > 0 is some factor we introduce to insure the boundary condition limt→−∞ ∆ρ (t) = 0 is met.
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• Then

〈B (t)〉 = −
1

i h

∫t
−∞ Tr

(
ρ0

[
V
(
t ′
)

, BI
(
t− t ′

)])
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[(
lim
η→0

1

2π

∫
R
e−i(ω+iη)t ′ Ṽ (ω)dω

)
, BI

(
t− t ′

)])
dt ′

= lim
η→0

1

2π

∫
R

∫t
−∞

i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI

(
t− t ′

)])
e−i(ω+iη)t ′dt ′dω

= lim
η→0

1

2π

∫
R

∫∞
−∞

i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI

(
t− t ′

)])
θ
(
t− t ′

)
e−i(ω+iη)t ′dt ′dω

1.3. DEFINITION. Define the linear response function

χBṼ(ω) (t) :=
i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI (t)

])
θ (t)

• Observe we can again change the order to write

χBṼ(ω) (t) ≡ i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI (t)

])
θ (t)

=
i
 h
Tr
(
ρ0Ṽ (ω)BI (t) − ρ0B

I (t) Ṽ (ω)
)
θ (t)

=
i
 h
Tr
(
ρ0Ṽ (ω)BI (t) − Ṽ (ω) ρ0B

I (t)
)
θ (t)

= −
i
 h
Tr
([
Ṽ (ω) , ρ0

]
BI (t)

)
θ (t)

Then we find

〈B (t)〉 = lim
η→0

1

2π

∫
R

∫∞
−∞ χBṼ(ω)

(
t− t ′

)
e−i(ω+iη)t ′dt ′dω

which is the linear response formula.
The next step is to employ this in order to find the Hall conductivity. We will start this analysis in the many-body

picture:
• Define

Bµ := −eJµ (r) := −e

1
2

N∑
j=1

(
vjµδ

(
r− rj

)
+ δ

(
r− rj

)
vjµ
)

where vjµ is the velocity operator of the jth particle along the µth axis.
• Define the operator

Xµ :=

N∑
j=1

rjµ

• Define

V (t) :=

N∑
j=1

e
∑

µ∈{x,y,z}

rjµEµf (t)

=
∑
µ

eXµEµf (t)

where Eµ is the electric field in the system and f (t) is some attenuation function which goes to zero at
t→ −∞ and “turns on” adiabatically.

• Then the linear response is

χBµeXν (t) :=
i
 h
Tr
(
ρ0

[
eXν, −eJµ I (r, t)

])
θ (t)

= −
ie2

 h
Tr
(
ρ0

[
Xν, Jµ I (r, t)

])
θ (t)

• By Ohm’s law, ja = σabEb, that is, σab is exactly the response of the current j to the perturbation E, so we
expect σµν = χBµeXν (t) somehow, as we shall see below.
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• Assume (|n〉)n∈N is an orthonormal complete set of eigenstates of H0 (the many-body Hamiltonian) with
eigenvalues (En)n∈N, where we assume E0 = min ({En|n ∈N}). In this basis, ρ0 is diagonal:

ρ0 =
∑
n∈N

|n〉 〈n| ρ0
∑
m∈N

|m〉 〈m|

=
∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m|

and then [ρ0, H0] = 0 means

〈
m ′
∣∣ [ρ0, H0]

∣∣n ′〉 =
〈
m ′
∣∣  ∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m| , H0

 ∣∣n ′〉

=
〈
m ′
∣∣ ∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m|H0 −
∑

(n,m)∈N2

H0 〈n | ρ0 |m〉 |n〉 〈m|

∣∣n ′〉

=
〈
m ′
∣∣ ∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m|Em −
∑

(n,m)∈N2

En 〈n | ρ0 |m〉 |n〉 〈m|

∣∣n ′〉
=

〈
m ′
∣∣ ∑
(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m| (Em − En)
∣∣n ′〉

=
〈
m ′
∣∣ ρ0 ∣∣n ′〉 (En ′ − Em ′)

!
= 0

and so if (En ′ − Em ′) 6= 0 then 〈m ′ | ρ0 |n ′〉 = 0. Assuming we don’t have degeneracy, this means 〈m ′ | ρ0 |n ′〉 ∝
δm ′n ′ .

• Then

Tr
(
ρ0

[
Xν, Jµ I (r, t)

])
=

∑
n∈N

〈
n
∣∣∣ ρ0 [Xν, Jµ I (r, t)

] ∣∣∣n〉

=
∑
n∈N

〈
n

∣∣∣∣∣∣
∑
m∈N

〈m | ρ0 |m〉 |m〉 〈m|
[
Xν, Jµ I (r, t)

] ∣∣∣∣∣∣n
〉

=
∑
n∈N

〈n | ρ0 |n〉
〈
n
∣∣∣ [Xν, Jµ I (r, t)

] ∣∣∣n〉

◦ In the canonical ensemble,

〈n|ρ0|n〉 =

〈
n

∣∣∣∣∣
(

e−βH0

Tr
(
e−βH0

)) ∣∣∣∣∣n
〉

=

〈
n

∣∣∣∣ (e−βEnZ

) ∣∣∣∣n〉
=

e−βEn

Z

◦ When T → 0, we can make the approximation 〈n|ρ0|n〉 ≈ δn0. We also assume that in the ground state
there is no current, that is, 〈0 | Jµ (r) | 0〉 = 0.
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◦ Thus we have

Tr
(
ρ0

[
Xν, Jµ I (r, t)

])
=

∑
n∈N

〈n | ρ0 |n〉
〈
n
∣∣∣ [Xν, Jµ I (r, t)

] ∣∣∣n〉
≈

〈
0
∣∣∣ [Xν, Jµ I (r, t)

] ∣∣∣ 0〉
=

〈
0
∣∣∣XνJµ I (r, t) ∣∣∣ 0〉− 〈0 ∣∣∣ Jµ I (r, t)Xν ∣∣∣ 0〉

=

〈
0

∣∣∣∣∣∣Xν
∑
n∈N

|n〉 〈n| Jµ I (r, t)

∣∣∣∣∣∣ 0
〉

−

〈
0

∣∣∣∣∣∣ Jµ I (r, t)
∑
n∈N

|n〉 〈n|Xν

∣∣∣∣∣∣ 0
〉

=
∑
n∈N

〈0 |Xν |n〉
〈
n
∣∣∣ Jµ I (r, t) ∣∣∣ 0〉− 〈0 ∣∣∣ Jµ I (r, t) ∣∣∣n〉 〈n |Xν | 0〉

=
∑
n∈N

〈0 |Xν |n〉
〈
n
∣∣∣ e− 1

i hH0tJµ (r) e
1
i hH0t

∣∣∣ 0〉− 〈0 ∣∣∣ e− 1
i hH0tJµ (r) e

1
i hH0t

∣∣∣n〉 〈n |Xν | 0〉

=
∑
n∈N

〈0 |Xν |n〉
〈
n
∣∣∣ e− 1

i hEntJµ (r) e
1
i hE0t

∣∣∣ 0〉− 〈0 ∣∣∣ e− 1
i hE0tJµ (r) e

1
i hEnt

∣∣∣n〉 〈n |Xν | 0〉

=
∑
n∈N

〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−
1
i h (En−E0)t − 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e

1
i h (En−E0)t

◦ So we find that

lim
T→0

χBµeXν (t) ≈ −
ie2

 h
θ (t)

∑
n∈N

(
〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−

1
i h (En−E0)t − 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e

1
i h (En−E0)t

)

◦ Thus the expectation value for the electric current is given by:

lim
T→0

〈Bµ (t)〉 =
∑
ν

∫∞
−∞ lim

T→0
χBµeXν

(
t− t ′

)
Eνf

(
t ′
)
dt ′

=
∑
ν

∫∞
−∞ lim

T→0
χBµeXν

(
t− t ′

)
f
(
t ′
)
dt ′︸ ︷︷ ︸

σµν

Eν

◦ And as such we found a formula:

lim
T→∞σµν (r, t) =

∫∞
−∞ lim

T→0
χBµeXν

(
t− t ′

)
f
(
t ′
)
dt ′dω

≈ −
ie2

 h

∫∞
−∞ θ

(
t− t ′

) ∑
n∈N

(
〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−

1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

−
ie2

 h

∫∞
−∞ θ

(
t− t ′

) ∑
n∈N

(
− 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e

1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

◦ The actual conductivity is time independent and so we need to integrate this over time:

σµν (r) = lim
η→0+

∫∞
−∞ dte−ηtσµν (r, t)

where e−ηt is a convergence factor with η > 0.
◦ Denote by vµ the total velocity, that is, vµ =

∫
d2rJµ (r).

◦ We are interested in the conductivity of the material as a whole, and not just at one particular point, so
we should average over space. Thus, if A is the area of the material, the final quantity we are interested
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in is

σµν =
1

A

∫
d2r lim

η→0+

∫∞
−∞ dte−ηtσµν (r, t)

=
1

A

∫
d2r lim

η→0+

∫∞
−∞ dte−ηt

∫∞
−∞−

ie2

 h
θ
(
t− t ′

)
×

×
∑
n∈N

(
〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−

1
i h (En−E0)(t−t

′) − 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e
1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

= e2
∑
n∈N

(
−
i
 h

1

A

)
lim
η→0+

∫∞
−∞ dte−ηt

∫∞
−∞ θ

(
t− t ′

)
×

×
(
〈0 |Xν |n〉 〈n | vµ | 0〉 e−

1
i h (En−E0)(t−t

′) − 〈0 | vµ |n〉 〈n |Xν | 0〉 e
1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

=
e2

A

∑
n∈N

〈0 |Xν |n〉 〈n | vµ | 0〉+ 〈0 | vµ |n〉 〈n |Xν | 0〉
En − E0

◦ The last step is to note that the velocity operator is equal to vµ = Ẋµ, and of course by the Heisenberg
equation of motion we then have vµ = 1

i h [Xµ, H0] or XµH0 −H0X0 = i hvµ. As a result,

〈0 |Xν |n〉 =
En − E0
En − E0

〈0 |Xν |n〉

=
1

En − E0
〈0 | (En − E0)Xν |n〉

=
1

En − E0
〈0 | (XνEn − E0Xν) |n〉

=
1

En − E0
〈0 | (XνH0 −H0Xν) |n〉

=
1

En − E0
〈0 | [Xν, H0] |n〉

=
1

En − E0
〈0 | i hvν |n〉

=
i h

En − E0
〈0 | vν |n〉

◦ Thus we can write σµν with only v’s as:

σµν =
ie2 h

A

∑
n∈N

〈0 | vν |n〉 〈n | vµ | 0〉− 〈0 | vµ |n〉 〈n | vν | 0〉
(En − E0)

2

which is the many body equivalent of the sum on occupied single-particle states   
          to show this we have to use the formula v = 1 ∂E(k)∂kh

2. The Edge Quantum Hall Conductance

The goal in this section is to show that 6.1 actually is equal to the quantum Hall condutance of an edge system. We 
assume the chemical potential on one edge is µ+ and µ− on the other edge, where µ+ 6= µ− (otherwise the current on 

one edge cancels out the current on the other edge as they flow in opposite directions). Using the formula
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j = ρv where ρ is the density of carriers and v is the velocity of the carriers, we have

I =
1

2π

∑
j

∫kj+
k
j
−

v (k)dk

=
1

2π

∑
j

∫kj+
k
j
−

1

h

∂E

∂k
dk

=
1

h

1

2π

∑
j

[
E
(
k
j
+

)
− E

(
k
j
−

)]
=

1

h

1

2π

∑
j

[µ+ − µ−]

=
1

h

1

2π

∑
j

V

where the sum is on intersection points of either µ+ or µ− with the gapless edge states, v is the velocity, and V is the
potential between the two edges. Thus we obtain that for each ascending crossing of the gapless edge mode with
either µ+ or µ− we must count +1 for the conductance (given by σ = I

V ) and −1 for a descending crossing.
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